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Abstract 

 
A systematic analytical modelling technique for the simulation of limited-ductile beam-
column elements based on the concentrated plasticity model is proposed in this paper. 
The modelling technique employs a backbone curve for the monotonic behaviour of the 
limited ductile beam-column elements based on empirical equations. The hysteretic 
behaviour of the beam-columns in the cyclic loading is modelled and calibrated to 
results from experiments on columns obtained from the literature using OpenSEES 
software. The modelling technique provides an important tool for the seismic 
performance assessment of existing buildings which have been designed with 
considerations of low to no ductile detailing. 
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1 INTRODUCTION 

Reinforced concrete buildings constitute a significant portion of construction in 
Australia. Many existing buildings in Australia and other low to moderate seismic 
regions have been designed with little to no considerations of ductile detailing. The 
majority of these buildings also possess vertical and horizontal irregularities which can 
exacerbate their vulnerability in an earthquake. There is a need to assess the seismic 
performance of buildings in these regions.  
Parametric studies based on dynamic modal analyses have been conducted by the 
authors to investigate the effects of discontinuities in the gravity load carrying elements 
of multi-storey buildings (Mehdipanah et al., 2016). It has been shown that the 
displacement behaviour of the buildings is not significantly affected by the 
discontinuities in the columns. However, the behaviour of the buildings in the non-
linear range is still largely unknown. Response modification factors specified in seismic 
design provisions (e.g., AS 1170.4 (Australian Standard, 1993), ASCE 7 (ASCE/SEI, 
2010)) are currently used for seismic design of reinforced concrete buildings to reduce 
the elastic base shear demand imposed on the buildings. The applicability of adopting 
such factors on the design of irregular buildings needs to be assessed. This paper 
presents interim findings of a study aimed to investigate the ductility and failure 
behaviour of multi-storey buildings featuring discontinuities in their vertical load 
resisting elements and evaluation of collapse due to the sudden shear failure in the 
transfer beams and formation of weak storey. In particular, this paper presents the 
analytical modelling technique adopted to predict the load deformation behaviour of 
lightly reinforced beam-column elements that are expected to fail in the flexural-shear 
failure or shear failure mechanisms.   
Two major studies on the analytical modelling of lightly reinforced concrete columns 
have been conducted by Elwood et al. (2003) and LeBorgne et al. (2014). In these 
studies, fibre sections along with the shear springs at the ends of the elements were used 
to model the shear response based on the distributed plasticity modelling techniques 
using OpenSEES software (McKenna et al., 2000). The coded elements are capable for 
accurate detection of shear failure mechanism. However, numerical simulations using 
these elements are computationally expensive and are often faced with convergence 
issues.  
This paper seeks to address the need for an accurate and robust modelling technique 
whilst keeping it simple for the analytical simulations of limited ductile RC beam-
column elements. The proposed modelling technique was successfully implemented in 
nonlinear finite element program OpenSEES. 18 columns were numerically simulated 
using the program. Results demonstrate an acceptable agreement with the results of 
experiments of non-ductile columns obtained from the literature.  

2 BEAM-COLUMN ELEMENTS FAILURE MECHANISMS  

Relative amounts of shear and flexural capacities dictate the nonlinear load deformation 
relationship of a beam-column element. When the ultimate flexural capacity of an 
element is less than the shear capacity, failure can occur due to degradation of the 
flexural capacity (Figure 1). In the case when the shear capacity is less than the ultimate 
flexural capacity, the displacement behaviour is controlled by shear mechanism (Figure 
2) which is characterised by a sudden decrease in the load deformation behaviour. The 
sudden decrease is caused by diagonal shear cracks resulting in the two sides of the 
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cracks sliding against each other. Hence, the element is not stable and cannot absorb 
extra energy. In contrasts to shear failure, reinforcements and concrete gradually reach 
their ultimate strain and element can sustain its stability before the onset of a flexural 
failure. Therefore, shear capacity degrades significantly as ductility demand increases. 
A beam-column element can have a load deformation behaviour that is initially 
governed by flexure (as the nominal shear capacity exceeds the ultimate failure 
capacity) but ultimately fails in shear (as shown in Figure 3). 
 
 

 
Figure 1: Flexural failure mechanism 

 
Figure 2: Shear failure mechanism 

 
Figure 3: Flexural-shear failure mechanism 

3 PROPOSED ANALYTICAL PLASTIC HINGE MODEL 

The load deformation relationship can be defined by estimating the strength and 
deformation capacities of the beam-column elements. In this study, the monotonic load 
deformation curve (backbone curve) was modelled using sectional moment curvature 
analysis to estimate the flexural strength capacities. Empirical formulae were employed 
to provide estimates of the lateral drift ratios at the onset of shear and axial load failure. 
Furthermore, the behaviour of the beam-column components under cyclic load was 
calibrated to experimental results of limited ductile columns obtained from the 
literature. 
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3.1 MONOTONIC BEHAVIOUR-BACK BONE CURVE 
In this study, a nonlinear finite element computer program OpenSEES (McKenna et al., 
2000) was utilised to model the shear critical beam-column members. Two ZeroLength 
Elements were used as hinges for the concentrated plasticity zones at the ends of the 
beam-column element (Figure 4). The elements were used to account for the nonlinear 
flexural response as well as the shear response and bar-slippage at the ends of the beam-
column elements.  
To define the backbone curve of the load deformation relationship, Hysteretic Uniaxial 
Material, a built-in material in OpenSEES, was adopted. The material has the capability 
to model any arbitrary hysteretic response shape, including pinching behaviour and 
variable unloading stiffnesses. This material model is also consistent with the backbone 
curve recommended in the seismic performance assessment guidelines, e.g., ASCE 41-
13 (ASCE/SEI, 2013). The material model is based on three positive and three negative 
points to define the trilinear backbone curve in the positive and negative directions of 
loading (Figure 5). Having diverse parameters to account for damage and pinching 
behaviour has made this material an appropriate tool to model the shear controlled 
elements. In this study, along with the ZeroLength Elements, an Elastic Beam Column 
Element was also used to model the column (Figure 4). 

 

 

Figure 4: Elements used to model the column Figure 5: Monotonic behaviour of the uniaxial 
Hysteretic Material 

3.1.1 Empirical Equations Predicting Shear Critical Behaviour Responses 
In recent years, studies on the estimation of drift ratio at the onset of shear and axial 
failure have been conducted. Elwood and Moehle (2003) suggested that the drift ratio 
at shear (∆𝑠

𝐿
) and axial load (∆𝑎

𝐿
) failure can be found using Equations (1) and (2): 

     ∆𝑠
𝐿

= 3
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 (1) 

where,  
 𝜌𝑡is the transverse reinforcement ratio, 𝜐 is the nominal shear stress 

(MPa), 𝑓𝑐
′ is concrete compressive strength (MPa), 𝑃 is the axial load on 

the column and 𝐴𝑔 is the column cross-sectional area. 
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 𝑑𝑐 is the depth of the column core from centre line to centre line of the ties, 
S is the spacing of the transverse reinforcement, 𝐴𝑠𝑡 is the area of transverse 
reinforcement, 𝐹𝑦𝑡 is the yield strength of the transverse reinforcement, 𝜃 
is the critical crack angle from the horizontal, assumed to be 65°. 

A study on lightly reinforced columns has also been conducted by Wibowo et al. 
(2014). Equation (3) was proposed to compute the drift ratio at the onset of axial load 
failure (𝛿𝑎𝑓). This point corresponds to the strength equals to half of the ultimate lateral 
strength which can be found from sectional moment curvature analysis. 

    𝛿𝑎𝑓 = 5(1 + 𝜌𝑣)− 1
1−𝛽 + 7𝜌ℎ +

1
5𝑛 (3) 

where,  
 𝜌ℎ  is the longitudinal reinforcement ratio, 𝜌𝑣is the transverse 

reinforcement ratio, 𝛽 = 𝑛
𝑛𝑏

, where 𝑛 is the axial load ratio and 
𝑛𝑏 is the axial load ratio at the balance point on the interaction 
diagram.  

 
The drift at the onset of shear failure can be calculated using linear interpolation 
between  𝛿𝑎𝑓 and the drift ratio when the ultimate lateral strength is reached. The shear 
failure is defined when the lateral strength has degraded to 0.8 of the ultimate lateral 
strength of the column. 

3.1.2 Flexural Response and Flexural Stiffness 
Using a sectional moment curvature analysis, the curvature at the yield (𝜙𝑦) and 
ultimate strength (𝜙𝑢) can be obtained. For a cantilever column, the drift ratio at yield 
is defined by Equation (4): 

    θ𝑦 =
𝜙𝑦𝑙

3  (4) 

where, 𝑙 is the height of the cantilever column. 
The effective moment of inertia ( 𝐼𝑒𝑓𝑓) can be calculated using Equation (5), where E 
is the modulus of elasticity. 

    𝜙𝑦 =
𝑀𝑦

𝐸𝐼𝑒𝑓𝑓
 (5) 

Having the values of 𝜙𝑢and 𝜙𝑦: 
    θ𝑝𝑙 = (𝜙𝑢 − 𝜙𝑦)𝐿𝑝  (6) 

where, 𝐿𝑝 is plastic hinge length, which can be estimated using Equation (7) (Mattock, 
1965).  

    𝐿𝑝 = 0.05𝑙 +  0.5𝐷  (7) 
where, D is the column depth. 
Equation (8) can be used to compute the contribution of the flexural response at the 
drift corresponding to the ultimate flexural strength (θ𝑢,𝑓𝑙𝑒𝑥). 

    θ𝑢,𝑓𝑙𝑒𝑥 = θ𝑦 + θ𝑝𝑙  (8) 

3.1.3 Shear Stiffness 
Shear stiffness at the onset of flexural yielding can be computed using the elastic shear 
stiffness of the element. 

    𝑘𝑠ℎ𝑒𝑎𝑟 =
5
6  𝐺𝐴𝑙 (9) 
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where, G is the shear modulus of the concrete and A is the cross sectional area of the 
element. 

3.1.4 Effect of Bar-Slippage in the Response 
The effects of bar-slippage can be modelled by using springs located at the ends of the 
beam-column elements. Sezen & Moehle (2004a) proposed analytical equations for the 
computation of rigid body rotations due to the slipping of the longitudinal 
reinforcements. The rotational stiffness due to the bar-slippage can be computed using 
Equations (10) and (11). 

    𝑘𝑠𝑙𝑖𝑝1
=

𝑀𝑦8√𝑓𝑐
′(𝐷−𝐶)

𝜀𝑠𝑓𝑠𝑑𝑏
  , 𝜀𝑠 ≤ 𝜀𝑦 (10) 

    𝑘𝑠𝑙𝑖𝑝2
=

𝑀𝑦8√𝑓𝑐
′(𝐷−𝐶)

⌈𝜀𝑦𝑓𝑦+2(𝜀𝑠+𝜀𝑦)(𝑓𝑠−𝑓𝑦)⌉𝑑𝑏
  , 𝜀𝑠 > 𝜀𝑦 (11) 

Where,  
 𝜀𝑠is the strain in reinforcing bar, 𝜀𝑦 is the yielding strain of the 

reinforcing bar, 𝐷 is the section depth, 𝐶 is the neutral axis 
depth, 𝑑𝑏 is the reinforcement diameter, 𝑓𝑠  is the stress in 
longitudinal reinforcements and 𝑓𝑦 is the yield strength of the 
longitudinal reinforcements. 

3.1.5 Total Response 
The total stiffness (𝑘1) of the hinge before yielding occurrence in the element can be 
calculated using Equation (12). 

    𝑘1 = (𝑘𝑠ℎ𝑒𝑎𝑟
−1 + 𝑘𝑠𝑙𝑖𝑝

−1)−1 (12) 
The stiffness due to the flexural response before yielding is assigned directly to the 
elastic element (as shown in Figure 4). 
Equation (13) can be used to estimate the total stiffness (𝑘2) of the element after 
yielding.  

    𝑘2 = (𝑘𝑓𝑙𝑒𝑥
−1 + 𝑘𝑠ℎ𝑒𝑎𝑟

−1 + 𝑘𝑠𝑙𝑖𝑝
−1)−1 (13) 

where, the post-yield flexural stiffness (𝑘𝑓𝑙𝑒𝑥) is: 

    𝑘𝑓𝑙𝑒𝑥 =
𝑀𝑢,𝑓𝑙𝑒𝑥 − 𝑀𝑦

θ𝑝𝑙
 (14) 

𝑀𝑢,𝑓𝑙𝑒𝑥 is the ultimate flexural capacity which can be found using sectional moment 
curvature analysis. 

3.2  IMPLEMENTATION IN OPENSEES 
To define the trilinear backbone curve (shown in Figure 5) for the monotonic response, 
six inputs are needed to define the Hysteretic Uniaxial Material (three inputs to define 
the backbone in the positive loading and negative loading direction). The negative 
backbone curve in this study was assumed to be identical to the positive backbone 
curve. The pre-yield flexural stiffness was accounted for by assigning the flexural 
stiffness directly to the elastic element (Figure 4). The value of (EI) should account for 
the reduction in stiffness due to the cracking (𝐸𝐼𝑒𝑓𝑓). 
As mentioned in Section 2, the load deformation relationship depends highly on the 
shear strength values. The nominal shear capacity can be obtained by calculating the 
shear strength value (𝑉𝑛) in accordance with the standard design procedure for concrete 
structures (AS 3600 (Standards Australia, 2009)). The value shall then be multiplied by 
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the height of the element to calculate the moment corresponding to the shear capacity 
(𝑀𝑛). 
The failure mechanism can be determined by comparing 𝑀𝑢,𝑓𝑙𝑒𝑥  obtained from the 
sectional moment curvature analysis with 𝑀𝑛 values (Figures 1 to 3). S1P in Figure 5 
corresponds to the yield strength of the element (𝑀𝑦). e1P in Figure 5 is the initial 
rotation ( θ𝑖) due to bar-slippage and shear displacement before yielding and can be 
calculated using Equation (15). 

    θ𝑖 =
𝑀𝑦

k1
 (15) 

S2P is the ultimate capacity of the element, which should be taken as the lesser of 𝑀𝑛 
and 𝑀𝑢,𝑓𝑙𝑒𝑥 . S3P is the residual strength which can be taken as 0.7×𝑆2𝑃. Sezen and 
Moehle (2004b) suggested that the shear strength can be reduced linearly from the 
ultimate shear strength (Vn) to the minimum value which equals to the 0.7 of the 
ultimate strength. Equation (2) or (3) can be used to define e3P which corresponds to 
the drift at the onset of axial load failure. 

3.3 VALIDATION OF PROPOSED MODELLING TECHNIQUE 
The validity of the proposed modelling technique has been verified using a database of 
experimental tests on shear critical columns available in the literature (Ghannoum et 
al., 2012; SERIES, 2013). The properties of the selected column specimens are 
summarised in Table 1. With the exception of specimen U6 (Saatcioglu and Ozcebe, 
1989) which failed in flexure, the rest of the specimens have failed in shear. Specimen 
U6 was selected in this study to check the capability of the technique to model the load 
deformation behaviour of a ductile column. 
 

Table 1 Experimental database used to check the validity of the results (units are in mm, kN and MPa) 

Test Specimen 
Section 

depth 

Section 

width 
𝜌𝑙 𝐹𝑦𝑙 𝐹𝑦𝑡 𝜌𝑡 𝑓𝑐

′ 
Axial 

load 

Ikeda (1968) 

IK 43 200 200 0.0199 434.4 558.5 0.0028 19.6 78 

IK 44 200 200 0.0199 434.4 558.5 0.0028 19.6 78 

IK 46 200 200 0.0266 434.4 558.5 0.0028 19.6 157 

IK 62 200 200 0.0197 344.8 475.8 0.0028 19.6 78 

IK 63 200 200 0.0197 344.8 475.8 0.0028 19.6 157 

IK 64 200 200 0.0197 344.8 475.8 0.0028 19.6 157 

Lynn (1996) 

2CLH18 457.2 457.2 0.0194 331.0 399.9 0.0007 33.1 503 

2CMH18 457.2 457.2 0.0194 331.0 399.9 0.0007 25.5 1512 

3CLH18 457.2 457.2 0.0303 331.0 399.9 0.0007 26.9 503 

3CMH18 457.2 457.2 0.0303 331.0 399.9 0.0007 27.6 1512 

Nagasaka (1982) HPRC19-32 200 200 0.0127 371.0 344.0 0.0119 21.0 294 

Saatcioglu and 

Ozcebe (1989) 

U1 350 350 0.0321 430.0 470.0 0.0030 43.6 0 

U2 350 350 0.0321 453.0 470.0 0.0030 30.2 592 

U3 350 350 0.0321 430.0 470.0 0.0060 34.8 600 

U6 350 350 0.0321 437.0 425.0 0.0085 37.3 600 

Sezen (2000) 
No. 1 457.2 457.2 0.0247 434.4 476.0 0.0017 21.1 667 

No. 4 457.2 457.2 0.0247 434.4 476.0 0.0017 21.8 667 

Yalcin (1997) BR-S1 550 550 0.0198 444.9 424.9 0.0012 45.0 1800 
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The yield and ultimate points on the backbone curve were determined using Response-
2000 (Bentz et al., 2000). The hysteretic behaviour of the elements is controlled by two 
damage parameters, two pinching parameters and a factor namely “beta factor”. The 
values of these parameters were determined by calibrating the hysteretic response into 
the experimental results.  
Results of the numerical simulations for the Saatcioglu and Ozcebe tests are plotted 
against the experimental results in Figure 6. It is shown that the proposed method is 
able to present the load deformation behaviour of the non-ductile columns. The rest of 
the numerical simulation results are presented in the appendix. The results of the 
calibration are summarised in Table 2. 
 

Table 2 Calibrated input parameters 

Test Specimen pinchX pinchY damage1 damage2 beta 

Ikeda (1968) 

IK 43 1 1 0 0.3 0.5 

IK 44 1 1 0 0.3 0.5 

IK 46 1 1 0.12 0.35 0.5 

IK 62 1 1 0.007 0.21 0.5 

IK 63 1 1 0 0.29 0.5 

IK 64 1 1 0 0.26 0.5 

Lynn (1996) 

2CLH18 1 1 0 0.01 0.6 

2CMH18 1 1 0 0.1 0.6 

3CLH18 1 1 0.12 0.08 0.6 

3CMH18 1 1 0.08 0.1 0.6 

Nagasaka (1982) HPRC19-32 1 1 0 0.5 0.2 

Saatcioglu and Ozcebe (1989) 

U1 1 1 0.003 0.08 0.5 

U2 1 1 0.01 0.17 0.5 

U3 1 1 0.005 0.17 0.5 

U6 1 1 0 0 0.45 

Sezen (2000) 
No. 1 1 1 0.057 0.19 0.55 

No. 4 1 1 0.057 0.13 0.55 

Yalcin (1997) BR-S1 1 1 0.05 0.08 0.6 
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Figure 6 Results of analytical simulations of Saatcioglu and Ozcebe specimens (1989) 

 
4   LOAD DEFORMATION RELATIONSHIP OF LIMITED DUCTILE 

COLUMN - EXAMPLE 

In this section the load deformation relationship of a limited ductile column is presented 
as an example. The column has been designed in accordance with AS3600 (Standards 
Australia, 2009) and hence represents a typical column that may exist in reinforced 
concrete buildings in Australia as a part of their gravity frames. Table 3 presents the 
properties of the example column. The height of the storey was assumed to be 3.2 m. 
Hence, for defining the backbone for a single hinge at one end of the full length column, 
height of cantilever column is 1.6 m.  
 

Table 3 Properties of a random example column (units are in mm, kN and MPa) 

Column 
Section 

depth 

Section 

width 
𝜌𝑙 𝐹𝑦𝑙 𝐹𝑦𝑡 𝜌𝑡 𝑓𝑐

′ 
Axial 

load 

 

400 350 0.0351 500 500 0.0047 40 2300 

 
The values of moment and curvature at yield and ultimate states were estimated by 
performing sectional moment-curvature analysis. By substituting the computed 
moments and curvatures into Equations (4)-(8), the effective moment of inertia ( 𝐼𝑒𝑓𝑓) 
and the plastic rotation corresponding to the ultimate flexural strength (θ𝑝𝑙) can be 
calculated. The nominal shear capacity of the column was estimated using AS 3600. 

N6 @ 300mm

N28

20
 m

m
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Equations (1) and (2) were employed to estimate the drift ratio at the onset of shear and 
axial load failures. The calculated values are reported in Table 4. 
The amount of drift ratio at the onset of flexural yielding constitutes the flexural rotation 
and the rotation due to shear and bar-slippage. The rotations due to the shear and bar-
slippage define the initial stiffness values of the plastic hinge backbone. Equations (9), 
(10) and (12)-(15) were employed to estimate the total stiffness of element before and 
after yielding (𝑘1 and 𝑘2) and these values were used as inputs to the hinge element 
shown in Figure 4. The elastic element (shown in Figure 4) was used to model the 
flexural behaviour of the element before yielding occurs. The simulated backbone curve 
is shown in Figure 7. The column is expected to experience flexural-shear failure 
mechanism.  
 

Table 4 Calculated values of example column 

𝑠1𝑝 = 𝑀𝑦(kN.m) 𝑀𝑢,𝑓𝑙𝑒𝑥(kN.m) 𝜙𝑦(
𝑟𝑎𝑑

𝑘𝑚
)  𝜙𝑢(

𝑟𝑎𝑑

𝑘𝑚
) 

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼
 

419.4 494.4 9.493 13.899 0.748 

𝑉𝑛(kN) 𝑀𝑛(kN. m) 𝑒2𝑝 =
∆𝑠

𝐿
(𝑟𝑎𝑑) 𝑒3𝑝 =

∆𝑎

𝐿
(𝑟𝑎𝑑) θ𝑝𝑙(𝑟𝑎𝑑) 

365.0 583.64 0.01313 0.01313 0.00123 

    𝑘𝑠ℎ𝑒𝑎𝑟(
kN. m

𝑟𝑎𝑑
)     𝑘𝑓𝑙𝑒𝑥(

kN. m

𝑟𝑎𝑑
)     𝑘𝑠𝑙𝑖𝑝 (

kN.m

𝑟𝑎𝑑
)before yeilding     𝑘𝑠𝑙𝑖𝑝 (kN.m

𝑟𝑎𝑑
)after yeilding    𝑒1𝑝 =  θ𝑖(𝑟𝑎𝑑) 

2361167.3 293335.9 334947.57 140848.56 0.00143 

 
 

 
Figure 7 Suggested backbone for the example column 

5 CONCLUSION 

This paper presents interim findings of an ongoing study aimed to investigate the 
ductility and failure behaviour of reinforced concrete buildings featuring discontinuities 
in the gravitational load carrying elements. In particular, an analytical modelling 
technique for a systematic simulation of limited-ductile beam-column elements based 
on the concentrated plasticity modelling method has been proposed. The proposed 
modelling technique was successfully implemented in OpenSEES. Results of the 
numerical simulations were compared with the experimental results of shear critical 
columns collected from the literature. The analytical modelling technique will be 
adopted to assess the seismic performance of the irregular multi-storey buildings.  
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8 APPENDIX 

 

 
Figure 8 Results of analytical simulations of Nagasaka (1982) and Yalcin specimens (1997) 

 

 
Figure 9 Results of analytical simulations of Lynn specimens (1996) 
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Figure 10 Results of analytical simulations of Sezen specimens (2000) 

 

 
Figure 11 Results of analytical simulations of Ikeda specimens (1968) 

 
 


